Results matching “energy efficiency”

Tesla Roadster Care

For owners who may be new or unfamiliar with the Tesla Roadster, I'll run through the basic information needed to preserve this rare and special vehicle.

The most obvious concern is properly maintaining the battery pack. If the Roadster is left unattended and without power for weeks or months, the battery back will slowly discharge until the pack is fully depleted. If this happens, the battery pack may be ruined. Even if plugged in, if power is interrupted by a popped breaker, extended outage, service disconnection, etc., permanent damage to the battery pack can occur.

Also of concern is temperature. The Roadster should not be left unplugged in extreme temperatures. If the battery pack gets hot, it should be plugged in so it can cool. Consult the owners manual for more information.

Charging

Level 1 In the United States and Canada, the Roadster can be charged at 120V with a simple cord sold as the MC-120. It just connects the car to power with no EVSE logic and the car assumes a 15A circuit suitable for charging at 12A. At this power level, the car can't run the full cooling system and in fact uses a lot of the power just to run the coolant pump. This means a slow rate of charge, and in fact in hot weather, may use all of the power just trying to cool the battery pack. In comfortable weather, not too hot and not too cold, and no rush to get charged, this can be an effective way to charge. Some owners used Level 1 exclusively. Since the coolant pump tends to run continuously, even after charging is complete, there may be a corresponding reducing in the lifetime of the coolant pump.

Level 2 charging means connecting to 240V single-phase power using an EVSE that communicates the maximum current draw allowed for the circuit. It uses the same communication protocol as standard J-1772 charging stations. Having more power means the battery pack can be better thermally managed, which can make quite a bit of noise when the fans, compressor and pumps are all going full tilt. The maximum charge rate of the Roadster is 240V/70A. Unless we were in a hurry on a road trip, we generally charged at 240V/32A which yields good energy efficiency and may be nicer to the battery.

The Roadster can charge from a standard J-1772 station with an appropriate adapter. Tesla sold one for a while and there's an aftermarket adapter.

Charge Modes

The Roadster has four charge modes, used for different purposes.

Standard Mode limits charging to the middle 80% of the battery pack, not letting the charge level get too high and warning the driver, and even shutting the car down, before getting critically low. This is the mode used for daily charging of a Roadster that's driven locally with some regularity.

Range Mode opens up the full charging range, allowing a higher state of charge and enables driving down to a lower start of charge. Range mode also limits power from the pack, and thus reducing maximum acceleration in the name of extending range. Occasional range mode charging didn't seem to have a negative effect on our battery pack, but charging frequently to the top of range mode may accelerate the loss of battery capacity. When we owned a Roadster, we'd do a full range mode charge at the start of long road trip, then switch over to standard mode for driving.

Performance Mode uses the full charging range, allows the battery to get warmer while charging, and allows maximum power (full acceleration). This is appropriate for driving on a track, but probably accelerates loss of battery pack capacity if used often.

Storage Mode displays the state of charge like Standard Mode, but will let the state of charge drop to around 30% then will maintain that level of charge. This is the best mode to use when the Roadster won't be driven for weeks or months. The car must be plugged in to maintain the health of the battery pack. The disadvantage of Storage Mode is that if the power supply is interrupted, it will start discharging from around 30%, so it will get into trouble sooner than if left in Standard mode. That's probably more of a concern if it's in long term storage and ignored vs. being kept for the winter in your garage where you'll notice of the power goes out or the breaker gets tripped.

An example charge screen:

roadster-charge-info.jpg

The drawing below shows how to interpret the state of charge in the two main charge modes. Range values are for the original 53 kWh battery pack when new.

Charge-Modes.png

Vehicle Log

The Roaster maintains a detailed internal log which can be downloaded via the USB port in the console. Although the format of the logs isn't documented by Tesla, various owners have been able to decode and extra a great deal of data. The log file has two sections: a long term section that has basic info and a more detailed section of recent driving and charging. See the page on the VMSParser I created for more information.

Remote Monitoring

The Roadster did not have support for remote monitoring, not at all for the 2008 (v1.5) Roadster and nothing driver-accessbile for the 2009 and later (v2) Roadster.

There is an aftermarket system availble, the Open Vehicle Monitoring System or OVMS. OVMS allows for remote monitoring of charging, GPS tracking, custom charge settings, and viewing battery metrics. In addition to allowing manual remote monitoring, it can also send low-battery alerts and unexpected motion alerts if the car moves not under its own power.

More Resources

There are a number of other entries on the blog detailing our adventures with the Roadster, plus another collection of longer Roadster articles of practical and historical interest.

The Tesla Motors Club forum is the best community resource around, although its focus has natually shifted to the newer Tesla vehicles.

OVMS and the Tesla Roadster Charge Time Predictor

Updated April 14, 2014 to add section on charging efficiency.

Charging an electric vehicle is pretty easy: just like my cell phone, I plug it in when I get home and it's fully charged in the morning. It doesn't matter how long it takes because I'm not waiting for it to finish; the car just charges up and waits for me.

That's pretty much the whole story for local driving, but I like driving electric so much I prefer to do longer trips electrically rather than burning gas. On those longer trips, it can be helpful to know how long a charge will take. To help figure out charge times in our Roadster, I did a study in 2010 on how charge rates and energy efficiency vary with available power and published a blog with the results. That blog has a table that shows charge rates for various charge rates from 120V/12A up to 240V/70A.

Charge Rate Ideal Miles
per Hour
Current Tapering Begins At:
Std % Std IM Range % Range IM
120V - 12A 3.3
120V - 16A 5.1
240V - 16A 13 93 179 82 205
240V - 24A 20 94 180 82 205
240V - 32A 28 93 178 82 207
240V - 40A 36 93 178 81 204
240V - 48A 42 91 174 80 201
240V - 70A 61 84 161 75 188

That charge rate table is handy, but it has some limitations:

  • It's a pain to load up the web page and do the math.
  • It covers the full range of charging options from the lowest to highest power rates, but it doesn't cover every possible rate, e.g. lots of sites are on 208V circuits instead of 240V.
  • It's specific to our car and the moderate temperatures in our garage.

The situation also gets more complex as the charge gets near the top and the car starts tapering the charge rate to pamper the battery pack, so calculating the charge time to full is more complicated than just looking at the available power. The graph below from the original study shows how the charge rate tapers down from various power levels.

Tesla_Amps_vs_SOC.png
Finally, since the Roadster has an active thermal management system that cools (or heats) the pack to keep the battery temperature in the best range, and that system uses power, the charge rate also depends on temperature, something my original study didn't address at all.

To build a more complete charge time predictor, I'd need to get charge data across a wide range of power levels and ambient temperatures, develop a charge tapering profile to use for calculating time-to-full, and I'd need to do this for each of the Roadster's three charging modes. This would require capturing a giant amount of charge data, which would need to come from Roadsters in different climates since the temperature in our Pacific Northwest garage doesn't vary much.

Open Vehicle Monitoring System

The Open Vehicle Monitoring System (OVMS) is an open source hardware and software project created by Mark Webb-Johnson, based in part on earlier work done by Scott Swazey who created the Tesla Tattler. OVMS consists of a $130 device that plugs into the car to both collect information and send commands. The device can interact with the driver via SMS messages and/or relay through a web server which communicates with smartphone apps. Since initial deployment on the Roadster, OVMS has been expanded to support other vehicles, all through volunteer support from vehicle owners.

Because the device sends data to a server and that data is stored (for a limited time period), there was a vast amount of charge data accumulated ready to be studied. Mark was kind enough to get me an anonymized capture of that data, 179 MB of data from 126 devices. The data is stripped of all identifying information, so I can't tell anything about the car or owner: no location or even VIN number. I can't tell if a given car is an early Roadster 1.5 in southern California, or a late 2.5 in Norway. What I get is records about every 10 minutes while the car is charging that tells me the time, SOC %, ideal miles, charge mode, charge voltage and amperage, various temperature readings, and the odometer.

Analyzing Charge Rates

I was able to extract data on just over 7,000 usable charging sessions. The graph below shows the available kW vs. temperature for each session. If you don't speak Celsius, 0°C is 32°F and 40°C is 104°F. Temperatures that are much above 40°C are probably due to situations where the Roadster ambient temperature sensor is sitting in direct sunlight on a hot day.

kW-v-temp.jpg
You can see clusters around common charge rates. The two lowest groups are at 1.44 kW (120V/12A) and 1.92 kW (120V/16A), and there are big groups around 7 kW (240V/30A) and 9.6 kW (240V/40A).

I wrote code to march through the data, identify records that correspond to each charge session, calculate the charge rate for the portion of each charge where the car is drawing the maximum allowed current for a steady power level, and note where tapering begins. I then sliced the data to see how temperature affects the charge rate at a given charge level. For example, the graph below shows the steady power charge rate (in ideal miles per kWh) vs. the average ambient temperature sensor reading for all of the charge sessions between 6.8 and 7.2 kW.

charge-rate-7kwh.jpg
The data shows a slight downward trend in charge rate with increasing temperature, which is reflected by the downward slope of the best-fit straight line approximation to the data. There is, however, a lot of variation in the data. Other factors (battery temperature, enclosed or open-air charging, battery pack starting temperature, etc.) have more effect on the charge rate than what can be predicted by knowing the average ambient temperature sensor reading during the charge, so the model can't predict differences in charge times from those external factors.

Using this data slicing, I was able to build a model that predicts the steady-state charging rate for power levels from 1.4 to 16.8 kW. The model incorporates a reasonable data set from a little below freezing to 40° C (104° F). Beyond that temperature range, there's isn't a lot of supporting data, so the model doesn't cover cases where battery heating is required or where battery cooling is extreme.

Modeling Charge Tapering

To figure out tapering curves, I looked at the onset of tapering for each charge mode. Below is the graph of the standard mode data showing the ideal miles at which tapering begins by charge rate.

Std-Mode-Taper-Onset.jpg
Once again, you can see that there's a pretty clear trend, reflected by the best-fit straight line, but there's also a lot of variation. Part of the variation is because different cars have different capacities in their battery packs. A nominal new pack will charge up to about 192 ideal miles in Standard mode, but a more well-traveled pack might only charge up to 170 ideal miles. Those two packs will taper the charge rate differently. To build the tapering profile, I had to allow for differences in the capacity of the cars in the data set and adjust accordingly.

The Charge Time Predictor

Doing this fairly giant amount of data analysis, I was able to build a charge time predictor function that is now incorporated in both OVMS and the Tesla Tattler. As you can see from the variation in the vehicle charging data, it's impossible to be perfect for every car, but the charge time predictor generally hits the mark within 30 minutes or 10% of the charge time. It doesn't do as well in temperatures below freezing or much above 100°F, or when the car is charging in a small, enclosed garage, or if the ambient temperature sensor doesn't reflect the actual air temperature, etc., but for common conditions, it seems to be doing a pretty good job.

In addition to the general variation in the data, there's another issue that affects charge times. Occasionally, the Roadster will charge up to the expected charge level (ideal miles) in about the time I expect, but then keeps going. For example, our Roadster generally charges to about 180 ideal miles in Standard mode, but sometimes it will hit 180 and just keep going, perhaps taking another 30 or 40 minutes to finish, showing a charge level that's wildly implausible, like over 190 ideal miles. Ten minutes after the charge, when the car recomputes the actual energy in the battery based on post-charging data, the charge level will drop back to the expected level. So these exceptionally long charge sessions don't seem to actually put any extra energy into the pack, despite the end-of-charge reading. I suspect the car is leveling the individual brick charge levels. When this happens and makes the charge run late, if I need to leave, I just interrupt the charge and go.

Good for the Driver, the Car, and the Utility

Having a charge time predictor enables a whole new charging feature: the ability to set the end time for a charge. This is important for two reasons.

First, when I'm doing a full range mode charge prior to a long drive, I'd really like the charge to finish shortly before I'm ready to leave. When charged to full, the Roadster runs the coolant pump to keep the battery temperature cool and equalized, which drains power. I'd rather be driving on those electrons for both the added range and energy efficiency.

Second, it's nice for the utility. Since we first got the Roadster, we've used the built-in charge timer to delay charging until off-peak hours. Our utility doesn't have time-of-use (TOU) rates, so we don't get any financial benefit, but it's still the right thing to do. Unfortunately, this creates a problem as we get more EVs on the road. If everyone sets their car to charge at some even hour, like midnight, that creates a surge for the utility. In areas where TOU rates are in effect, you can see this effect in the data collected by the EV Project. Using the charge time predictor with the new OVMS "charge by" feature, I can set the charge to end around a specific time, so the start time varies with how much energy I use driving each day. Since the actual charge time varies from the predicted time, even the end time varies, so there won't be a big instant spike or drop at either end of the charge for vehicles that set a charge end timer. That's good for the grid.

Charging Efficiency

Although not directly related to charge time prediction, the data set also allows for examining how charge rate effects efficiency. Using the model developed for the charge time predictor, the graph below shows how charging efficiency varies with charge rate. Charging efficiency is expressed as Wh per ideal mile, so smaller numbers are better.

Wh-per-IM.png
This shows that in moderate temperatures, charging efficiency increases with charge rate. There's a huge improvement between 120V/15A (1.44 kW) and 240V/24A (7.68 kW), but after that there's a much more gradual improvement with increasing charge rates.

Availability

The charge time predictor for the Tesla Roadster is available in the latest firmware versions of OVMS and the Tesla Tattler and also on the Tesla Roadster Charge Time Predictor page.

Leaf SOC-Meter Build Party

Nissan did a great job with the Leaf, but I do have one gripe: the lack of a state-of-charge meter with enough precision that you can understand how much energy you use and how driving conditions affect efficiency. Having a good SOC meter allows drivers to comfortably use more of the car's range.

Fortunately, there's a strong Leaf community with a lot of smart owners. Generous owners have spent probably thousands of hours decoding the messages available through the Leaf's on board diagnostics (ODB) port, creating software to interpret those messages, and designing hardware to view and log this information conveniently.

About a month ago, I realized my efforts to build a gizmo and contribute to the community effort were stalled while I worked on other projects, so I suggested we buy one of GaryGid's SOC-Meter kits. As long as we were doing it, I thought it would be fun to invite other owners in the area to do a group order.

Cathy liked the idea and organized the purchase and a build party. We got enough interest to order 10 kits, which arrived in time for Cathy to build our meter in advance so she understood the assembly and could help everyone with the build. In addition, she updated the build manual and added photos.

We arranged to meet at a local Maker space, StudentRND, in Bellevue. It's a great shop, with lots of room to work and cool tools like a laser cutter. If you're in the area, we recommend checking them out.

We met on Saturday. Despite the inclement weather (we had to shovel two inches of mostly ice from our steep 500-foot drive to get our Leaf on the road), we had a good turnout. Here's a photo Cathy took early in the process:



A little later, there was more going on as people made progress on their kits. I'm in the back of the photo, working on my iPhone program for logging EV data.



The only barrier to getting the assembly done in a couple of hours is letting the silicone adhesive cure for an hour in the middle of the process. Still, we had a couple of folks finish and test their meters during the meeting. Cathy is putting the finishing touches on an update to the assembly manual with some insights she learned from the party.

The final product is pictured below, including labels that Cathy added to the kits for our build group.



We now have our meter fully installed in the car. It's awesome.

Watt Fun: Driving a Nissan Leaf

In September, we finally got our Nissan Leaf. We had signed up very early in the process, and could have had a Leaf in the spring of 2011, but we decided to put our order on hold until they offered the cold weather package. It was worth the wait!

LEAF.jpgIt's now our primary vehicle and we've put just over 2,000 miles on the odometer. Here's our review of the experience so far.

The Good

Driving Experience We've been driving electric since 2008, so it's easy for us to forget how much better the driving experience is with an electric drive train. The accelerator pedal on the Leaf gives instant, smooth response: you push, it takes off. There's no waiting for a gear shift, and no slow climb to full acceleration the way you have to wait for a gas car to rev up the engine speed to maximum torque, then have to shift gears and repeat. It's just smooth, rapid acceleration all the way. I'm sadly reminded of this every time I fly somewhere and am forced to rent a clunky gas-burner.

Braking The Leaf also features regenerative braking. In a gas car, if you want to slow down you have to hit the brakes. This costs you money twice: you're throwing away the kinetic energy of the car and you're wearing out your brake pads. With regenerative braking, you use the motor as a generator to slow the car and charge the battery pack, plus you avoid wearing out the brakes. Even more than the cost savings, regenerative braking shines when going down a hill. In a gas car, you have to ride the brakes or downshift. Riding the brakes is bad as it heats up the pads and can present a safety issues on long downslopes. Downshifting, or engine braking, is better except that you have to chose one of a few gears. With regenerative braking, you can smoothly control your speed with your right foot, whether you're accelerating up to speed, or holding your speed going downhill. Friction brakes work just as on a gas car when you need to stop quickly.

Controls The Leaf has a built-in touch screen for controlling the navigation system and the audio system (AM, FM, CD, iPod/MP3 player, and the ability to subscribe to satellite radio), as well as viewing car information and setting preferences. There are tactile controls on the steering wheel for the audio system and cruise control, and tactile controls around the touchscreen so you can control the vital systems by touch without taking your eyes off the road.

Backup Camera The 2011 Leaf SL package adds a backup camera displayed on the large center console screen. With the camera, it's so much easier to back up whether it's out of a parking spot in a crowded lot, backing into a spot, or just being able to back up against an edge or wall when getting out of a tight spot. I'm now spoiled and miss this feature when driving a car that doesn't have it.

Touchless Keyless Entry The Leaf detects the keyfob wirelessly so that when you are right next to the car, you can just push a button on the handle to lock or unlock the doors or the hatch. You don't have to fumble to pull your keys out of your pocket or purse, which is incredibly handy when you have an armload of groceries. It's the same for starting the car, no fooling with a key, you just push a button and the car starts as long as the fob is inside the car with you. The car knows the location of the keyfob with enough precision that it won't let you lock the keys in the car and can warn you with a beep if you get out of the car without turning it off.

Quiet Ride It's widely reported that electric cars are quiet; some even wrongly claim they are silent. Electric cars don't have noisy internal combustion engines that have to be muffled. At low speeds they can be surprisingly quiet, although you quickly learn to recognize their unique sound even when they creep up slowly behind you. At speeds above 20 mph or so, they make the same noise as a typical gas car does, which consists mostly of tire noise.

That's the story outside the car. Inside the car, it's tricky to do a good job of insulating road noise while keeping the vehicle weight low to maximize efficiency and range. Even if you get rid of the dominant road noise, you just make it possible to hear all sorts of little sounds that you wouldn't notice in a less insulated car. This is especially difficult when there's no engine noise to mask other drivetrain noises. This is the reason for the Leaf's unusual protruding headlights: they deflect airflow around the side view mirrors to get rid of a wind noise you wouldn't even notice in a noisy gas car.

Our two other electric vehicles sound just like the Leaf from the outside, but inside the Leaf is a completely different experience, by far the quietest riding car we've ever owned. I haven't seen the data, but I suspect it's on par with heavily sound engineered luxury sedans that cost far more than the Leaf.

Cold Weather Comfort Because the Leaf uses electric power to heat the car, it doesn't have to wait for an engine to heat up before it can start blowing warm air. The cold weather package (now a standard feature on the 2012 Leaf) adds heated seats (front and rear), heated side mirrors, and a heated steering wheel. If you're driving in the cold, there's nothing more wonderfully decadent than a heated steering wheel. With the cold weather package, the heated seats and the steering wheel get warm even faster than the cabin air.

The cold weather package also adds a battery heater for really cold climates. That's not an issue in Seattle where we rarely see temperatures below 20°F, but is important in more extreme climates.

Remote Control and Monitoring Using a wireless communications system called Carwings, we can monitor the car remotely to check things like the state of charge. The system sends us a text message if we pull into the garage but forget to plug in.

We can also tell the car to pre-heat from our phones. This is something that just can't be done with a gas car sitting in your garage where running the engine would fill the garage, and possibly the house, with deadly carbon monoxide. If the car is plugged in, it uses grid power for the pre-heating, so it doesn't reduce our range. Most of the time, our driving is nowhere near any concern about range, so we use the pre-heat feature even when it uses battery power to warm the car for our return after it has been sitting in a cold parking lot.

Fuel Cost At the US average cost for electricity (11 cents per kWh), the Leaf can drive 30 to 35 miles per dollar of electricity. If gas costs $4/gallon, that's the equivalent of getting about 130 miles per gallon, not in a gutless, rattling economy box, but in a quiet, comfortable car with excellent acceleration.

If the savings in fuel cost is applied to a buyer's monthly car payment, the Leaf is an incredibly affordable car.

Convenient Fueling The Leaf is best suited for local driving, which fortunately accounts for more than 90% of the typical American's driving. If you can use the Leaf for your local driving, you'll find plugging in overnight to be far more convenient than going to a gas station. Especially if you share a car, you've no doubt experienced the rude surprise of needing to make a detour to a gas station, spend time waiting in line, and pump gas when you're already running late. The Leaf is fully charged every morning with just a few seconds of effort required to plug it in at night, about as much time as it takes to plug in a cell phone. Charge time varies with how far you've driven, anywhere from a few minutes to eight hours, but it doesn't matter at all because it happens while you're sleeping.

I know many people think charging time will be an issue, but I just laugh when I see people waiting in a 20-minute line to save a few pennies per gallon at Costco. Driving electric, I pay the equivalent of $0.99 per gallon of gasoline and fueling takes just a few seconds of my time per day. I can only imagine how long the line would be if Costco sold gas for $0.99 per gallon. I get that price and I can charge up in my garage where there's always shelter from the elements and never a wait.

The Bad

Nissan has done an amazing job with their first full production electric vehicle. It's the most comfortable car Cathy and I have ever owned. It's a wonderful car, with no competition whatsoever at any price when considering the comfort and convenience it offers plus the liberation of not being hostage to wildly fluctuating gas prices. However, Nissan got it wrong on two important aspects of driving electric. The good news is that new electric vehicle drivers will get all of the benefits mentioned previously before they notice these more subtle shortcomings.

Increasing Range Anxiety Range anxiety is the irrational fear of running out of power even when an electric car has plenty of range for your driving needs. The way the Leaf presents information about the car's state of charge causes range anxiety. The dash shows in large numbers an estimate of your remaining range. That sounds pretty reasonable, but it has to make an assumption about how you will be driving for the rest of the trip. The Leaf assumes you'll be driving the same as you have been for some unknown period of time. Unless you do all of your driving under exactly the same conditions, same steady speed and constant slope, that estimate is going to be wrong pretty much all the time since it fluctuates wildly as conditions change.

The best information we get is a 12-segment display that displays the state of charge in approximately 8% increments. The problem is you can't tell where you are in the bar. Suppose I drive from work to the grocery store and the gauge drops from 8 bars to 6 bars. That could be from the top of bar 8 to the bottom of bar 6 (almost three bars, or 24%) or from the bottom of bar 8 to the top of bar 6 (just over one bar, or 8%). That's a big difference.

While the estimated range can be useful in some circumstances, Nissan should give us a way to display the car's state of charge as a percentage. I understand that there is some inherent uncertainty in computing the precise amount of energy remaining, but the raw state of charge should be presented to the driver with the same precision as the estimated miles. Having this information would help drivers better understand their energy use and increase the Leaf's usable range. This is such an important piece of information that owners have figured out a way to display the state of charge by tapping into the Leaf's on-board diagnostic port.

Denying the Best Feature of Electric Driving The regenerative braking offered by an electric car dramatically improves the driving experience. Once you get feel of driving electric, it's a joy be able to control your speed with just one pedal: push down to speed up, lift to slow down. Whether it's uphill or downhill, speeding up an on ramp or slowing down for an exit, you do it all with the accelerator pedal. It's far more natural than how it works on a gas car, it's just different from how we all learned to drive. Nissan was apparently concerned about making the Leaf feel as much like a gas car as possible so as not to scare away consumers afraid of change. To do this, they have two modes, normal and economy mode. In normal mode, there's a limited amount of regenerative braking on the the right pedal. In economy mode, there's more regenerative braking, but acceleration is dampened out. You can get the same acceleration in eco mode as normal mode, you just have to push the pedal farther down.

I want maximum regenerative braking, so I always drive in eco-mode. This makes the accelerator less responsive unless I really push it. I would much prefer a more typical pedal response with the maximum regenerative braking. It's also annoying that the drive mode doesn't persist, I have to put it into eco-mode every time I start driving.

Conclusion

Nissan clearly leveraged what they learned from making the world's first factory-made lithium-ion electric car over ten years ago* to create an incredible first generation production electric vehicle.

The comfort features of the Leaf make it worth the sticker price, even if it had a gas drive train. With efficiency that can't be matched by an internal combustion engine and fueled with cheap domestic electricity, the savings in total cost of owning and driving the Leaf make it the uncontested winner in value for its class of comfort and driving experience, in many ways superior to all gas-powered cars at any price. Add in the environmental benefits and the satisfaction of knowing your fuel dollars stay in the US instead of pouring into the global oil market that threatens our national security as well as our economy, and no other car on the market offers the value of the Nissan Leaf.

If you're in the market for a new car, and typically drive under 60 miles per day, and already own a gas car that you can use for those few longer trips, you owe it to yourself to test drive a Nissan Leaf before investing in another gas car.

* The all-electric Nissan Altra built to satisfy California's short-lived zero-emissions mandate from 1997 to 2003.

EV Efficiency: Tesla Roadster and Nissan LEAF Compared

How do the Tesla Roadster and Nissan LEAF compare in energy use?

Tesla Roadster owners have been driving electric for a couple of years now and have built up knowledge about how much energy is required for many different routes and driving scenarios. New Nissan LEAF owners could perhaps benefit from what Roadster owners have learned, especially in the near term while charging stations are few and far between.

On August 4, 2011, we did a test to answer a couple of questions:

How does energy use in a Nissan LEAF compare to a Tesla Roadster?

Does knowing how much energy a Roadster uses for a certain drive help a LEAF owner plan the charge needed for a long drive?

The Plan

To take a first stab at figuring things out, Cathy and I joined up with her parents, Jim and Barbara Joyce, to drive a Nissan LEAF and a Tesla Roadster on an interstate freeway up a mountain pass. We wanted to compare just the two cars and eliminate as many other variables as possible. We drove up together so we had identical road and weather conditions, put the cars on cruise control to minimize driver differences, and restricted ourselves to using the fan but not air conditioning. From Roadster data collected on previous drives and also a recent LEAF drive up the same pass, we were pretty confident it could be done from the Joyces' home even cruising at 70 mph. We were right.

snoq-70-cars.jpgThe Route

We started at the Joyce residence near where Washington State Highway 18 meets Interstate 90 at Exit 25. Their LEAF started with a full charge. We drove to I-90, recorded trip and energy data at the stop light at the base of the on-ramp, accelerated up to 70 mph, then locked on cruise control. We exited I-90 at Exit 52 and recorded trip and energy data at the bottom of the off-ramp. We puttered around the summit for a bit, got some lunch, then reversed the route, again recording data at the bottom of the on-ramp getting back onto I-90 and again after exiting the freeway back at exit 25.

The Results

The graphs below show energy use for both vehicles up the pass from exit 25 to 52, a distance of 27 miles with a 2,000 foot elevation gain, then the descent back down from exit 52 to exit 25.

snoq-70-energy.png The graph shows that the LEAF used about 6% more energy than the Roadster on the way up and about 13% more energy on the way down. Both vehicles used about twice as much energy on the way up as the way down, although that ratio depends on the slope and speed. For a sufficiently steep road and slow descent, an electric vehicle can actually gain net energy driving downhill. At 70 mph, we did not see a lot of energy production, just low energy driving. At slower speeds, more energy would have been produced on the steep sections of the descent.

The LEAF averaged 2.7 miles per kWh (376 Wh/mi) on the way up and 4.8 mi/kWh (233 Wh/mi) on the way down, for an average of 3.3 mi/kWh (305 Wh/mi).

The Roadster averaged 2.8 miles per kWh (355 Wh/mi) on the way up and 5.5 mi/kWh (206 Wh/mi) on the way down, for an average of 3.6 mi/kWh (271 Wh/mi).

How Much Charge is Needed to Drive a LEAF Up to Snoqualmie Pass?

The LEAF doesn't give an indication of the state of charge to any useful precision, so we could only measure energy use from the trip miles and miles per kWh supplied by the LEAF. In terms of how much charge we used, the LEAF started with a full charge and ended back home with one bar showing and 4 miles on the generally worse-than-useless guess-o-meter. This included under 10 miles of driving between the freeway and home. It was a little surprising that the LEAF charge got so low given that the home-to-home energy use was only about 18 kWh, but the reported 24 kWh capacity of the battery is probably measured at a discharge rate that's lower that what's needed to climb the pass at 70 mph. Also, we know the LEAF hides some reserve charge from the driver.

From this data I conclude that starting from a full charge in Snoqualmie or North Bend, a LEAF can easily make it up and down the mountain at the speed limit without climate control. With climate control on, a bit slower speed may be required.

With a DC Quick Charge to 80% at North Bend, it could probably be done by anyone starting in the greater Seattle metro area.

Having Level 2 charging at the summit would be a big help. Even Level 1 would make a difference for someone spending the day skiing at the pass and wanting to get home with little or no charging on the way back.

Driving at lower speeds would use less charge. Really efficient driving, including better use of regenerative braking on the way down, would further decrease the charge needed.

Comparing the Nissan LEAF and Tesla Roadster

The curb weight of the Roadster is about 2,700 lbs, compared to the LEAF at 3,350 lbs. So the LEAF weighs about 25% more than the Roadster. The LEAF has a more aerodynamic shape, but has a much larger frontal cross-sectional area, so I would expect the LEAF to also have more aerodynamic drag. At freeway speeds, one would expect the aerodynamic drag to be a bigger factor in energy use, but doing a significant climb increases the importance of vehicle weight.

Because of how these two issues interact under different conditions, these numbers tell the story only for this specific drive on this route at this speed. Other drives are likely to give different results, so more tests are needed to get the full picture. It would also be interesting to do the same drive with multiple LEAFs and Roadsters to see how much variation there is between vehicles of the same model.

Data Method and Repeatability

We did everything we could both to minimize the difference between the two side-by-side drives and also standardize the drive so it could be repeated later under either similar or different conditions.

It was warm enough that we had to run the car fans to stay comfortable, but we were able to avoid use of the air conditioning.

We were able to maintain 69 to 70 mph pretty well, with a couple of exceptions. Below are graphs of the Roadster's speed versus time. The LEAF speed profile would be similar, with one exception on the descent, described below.

snoq-70-ascent.pngOn the way up, a few minutes after we got onto I-90, we ran into a clump of traffic we had to maneuver through, which slowed us down a little for a few minutes around the 10-minute mark.

snoq-70-descent.pngOn the way down, just a couple of miles from exiting I-90, the Roadster got boxed in between an RV at the same speed in the center lane and a slower vehicle entering just ahead of us. Rather than speed up to jump ahead of the slower vehicle (which would have used a bunch of extra energy), we slowed down sharply to let the vehicle in ahead of us. The LEAF was far enough ahead that it avoided this problem.

EVs at the 2011 Portland International Auto Show

Cathy and I were invited to show our Tesla Roadster in the Eco-Center at the 2011 Portland International Auto Show. Tesla Motors didn't have the resources to participate, so we and Chad Schwitters agreed to show our cars and represent Plug In America in promoting electric vehicles.

Since we got our first EV in 2008, a 2002 Toyota RAV4-EV, we've participated in many car shows. When we started, the EV world was made up of dedicated enthusiasts converting gas cars to electric or holding onto the few vehicles from the early 2000's saved from the crusher (see Who Killed the Electric Car). The Portland show made it clear things have changed: a 30,000 square-foot area at a major auto show dedicated to energy-efficient vehicles, Nissan and GM selling mainstream electric vehicles, other automakers scrambling to jump onto the EV bandwagon, and lots of interest among the show attendees.

01.jpg
The show organizers got in touch with us through our friend John Wayland, who was invited to show White Zombie, the world's fastest accelerating street-legal electric vehicle. John and his team have been advancing the state of the art for 14 years. Not only does White Zombie go from 0 to 60 mph in 1.8 seconds and cover the quarter-mile in 10.2 seconds, it has a driving range of 120 miles. John makes a point of driving it to the track from his home to demonstrate that an electric vehicle can have tremendous performance without making the sacrifices that limit most high-end drag racers to being hauled around on trailers.

02.jpg
We insisted on being placed next to White Zombie so we could hang out with John and his crew, and also point people who thought the Roadster's performance (0 to 60 in 4 seconds) was impressive to a much quicker electric car.

03.jpg
On the other side of us, there was a Nissan Leaf. For people who thought the Roadster's energy efficiency and lack of dependence on oil was cool, but too expensive or impractical, we could point them to a Leaf that costs less than a fourth of the Roadster's price and carries 5 passengers and much more cargo. Nissan had a second Leaf in their main area that was open so people could check out the interior.

04.jpg
They were a day late, but GM did finally get a Volt in the Eco-Center, next to the Leaf. GM also had a Volt in the middle of their main section for the whole show, but it was up on a pedestal and not open for viewing.

05.jpg
To make sure no one thought that EVs were a new invention, there was a 1917 Detroit Electric car on display. These were popular back in the day when cars had to be hand-cranked to start. No one wanted to put up with that inconvenience. It makes me wonder why so many people today are content to put up with the inconvenience of fueling their cars at gas stations and the insanity of sending their fuel dollars into the global oil market that supports really unfriendly governments.

06.jpg
You don't have to drive on four wheels to get the benefits of driving electric: Brammo is marketing a line of all-electric motorcycles.

07.jpg
Straddling the gap between motorcycles and traditional cars are companies like Arcimoto that are building highly efficient, enclosed two-passenger vehicles.

08.jpg
In the fall of 2009, a representative at the Seattle Auto Show told me how the Mini folks were way ahead of everyone else in producing an electric vehicle. The best they have to show so far is a small number of test cars they've put on the market with a one-year lease program. Although it was cool so see the vehicle, it was locked up tight and unattended. The Mini-E could be such an awesome vehicle if they would just get it done and start selling them.

09.jpg
Next year, with even more vehicles available to consumers, I'm hoping EVs will be at the show in force and not relegated to a fringe eco-conscious area. Maybe next year we can be showing front and center in a section dedicated to vehicles that offer instant acceleration, convenient at-home fueling, support for local energy jobs, reduced dependence on the highly volatile global oil market, and increased national security. I suppose we could mention that they are also better for the environment, but I think everyone already knows that.

Tesla Roadster Charging Rates and Efficiency

Note that the graph cuts off the last three hours of the 16A charge. The 120V charging graphs aren't shown. A full standard mode charge at 120V/16A takes about 38 hours and at 12A it takes about 60 hours.Note that the graph cuts off the last three hours of the 16A charge. The 120V charging graphs aren't shown. A full standard mode charge at 120V/16A takes about 38 hours and at 12A it takes about 60 hours.Updated: April 17, 2011 to add 120V charging data.

The Tesla Roadster offers a wide variety of charging options, from 120V/12A up to 240V/70A. Charging at higher voltage and current charges faster, but most of the time charging speed isn't an issue. If you drive a typical commute and charge at night, even the lowest power will get the car fully charged overnight. At least with the early Roadster firmware, charging at 120V was pretty inefficient because of the fixed charger overhead, but what about charging at 240V at various amperage limts? My theory was that charging at higher current is more efficient because you spend less time paying the charging overhead, but another owner challenged that assumption with the theory that higher current is less efficient because it generates more heat and thus increases the amount of energy spent keeping the battery pack cool.

Another aspect of charging is that for any given current setting, the Roadster will charge steadily at that current until it gets near the top of the charge, at which point it will start to taper off. This reduces your charge rate near the top of the pack. This aspect of charging isn't documented in the owners manual.

If I don't care about charging time, what's the best amperage for energy efficient charging? If I'm on a road trip and want to squeeze the most range out of time spent at a charging stop, how should I space my stops and how long should I charge at each one? I've collected enough data to shed some light on these questions.

Methodology

I performed a series of charges at various current levels from relatively low battery states up to a full standard mode charge. For each charge, I collected time, voltage and amperage once per minute, and state of charge once every 10 minutes. From that, I can compute energy used during every segment of the charge and the total energy used.

To track our energy use for driving, we have a dedicated electric meter for each of our EVs. To validate my energy calculations, I verified that the total energy calculated per charge matches the value computed from the meter readings.

All charging was done overnight in cool weather with a 2008 Roadster. The 16A charge was done with firmware version "3.5.17 15", all other runs were done with firmware version "3.4.17 15". The 16A charge stopped at a lower state of charge (96%, 188 IM) than I normally see (98%, 193 IM). I don't know if this is due to the lower current limit, the new firmware, or a one-time fluke.

Charging Efficiency Results

Is it more efficient to charge at a low rate or a high rate? Here are the results:

Charge Rate Wh per Std % Wh per Ideal Mile
120V - 12A 807 414
120V - 16A 723 371
240V - 16A 589 306
240V - 24A 544 282
240V - 32A 527 274
240V - 40A 512 266
240V - 48A 524 272
240V - 70A 516 268

As you can see from the table, there's not much variation in charging efficiency when charging at or above 240V at 32A, but energy use rises noticeably at lower power levels.

Road-tripping and Charging Rates

Also of interest are the charging rates at various current levels. This is especially important when charging away from home.

Charging at higher currents is faster than lower current, but by how much? Is it worth it to drive 55 mph in order to make it to a 40A charge point instead of driving faster and stopping sooner at a 24A or 32A charging spot? Tesla gives us a table on charging rates, but it's pretty low resolution.

How far can I charge before I start getting diminishing returns because of the current tapering that happens near the top of the charge? Tesla is silent on this subject.

If you care about getting the most out of your charging stops, you may be in Range Mode, so this table shows both standard and range mode values for when current begins to taper off.

Charge Rate Ideal Miles
per Hour
Current Tapering Begins At:
Std % Std IM Range % Range IM
120V - 12A 3.3
120V - 16A 5.1
240V - 16A 13 93 179 82 205
240V - 24A 20 94 180 82 205
240V - 32A 28 93 178 82 207
240V - 40A 36 93 178 81 204
240V - 48A 42 91 174 80 201
240V - 70A 61 84 161 75 188

Let's assume I want to get the most range for time spent charging, and don't need to charge all the way to the top. From the above table we see that if I'm charging at 48A or lower, I can expect to see the charging rate start to taper off at around 80% or a bit over 200 ideal miles (range mode). If I'm lucky enough to be charging at 70A on the road, my charge rate will start dropping around 75% or 188 ideal miles. I'll keep charging above 40A until I hit that 80%/200IM mark, so if my next charging stop is only 40A, I may as well keep charging to that point.

I'm sure there's some variation from car to car, and the pack and ambient temperatures will change charging behavior, so don't plan your trip to depend on these exact values, but this is at least a rough guide.

Charging Profile Graphs

Let's start by looking at how the state of charge varies over time using different current limits at 240V. All charges are standard mode all the way up and normalized so that all the charge sessions are shown from the same starting point, around 36%.

Tesla_SOC_v_Time.png
You can see how more current yields a faster charge, and that the rate of charge starts to drop off as the battery pack gets near the 100% mark.

Note that the graph cuts off the last three hours of the 16A charge. The 120V charging graphs aren't shown. A full standard mode charge at 120V/16A takes about 38 hours and at 12A it takes about 60 hours.

Now let's examine current draw and state of charge throughout each of the current settings. In each session, the car draws an approximately constant amount of current until near the top of the charge when it begins to taper off. The following graphs show current drawn (in amps) and state of charge (as standard mode percent) as a function of charge time in hours. Each charge begins at a slightly different level, but all start below 40% so they have a nice long stretch of steady current draw.

Tesla_Charging_240V_70A.png
Tesla_Charging_240V_48A.png
Tesla_Charging_240V_40A.png
Tesla_Charging_240V_32A.png
Tesla_Charging_240V_24A.png
Tesla_Charging_240V_16A.png
You may notice that at 32A and 40A, the rate at which the SOC increases doesn't drop off as much as you might expect from how quickly the current drops near the end. I attribute this to the SOC calculation stabilizing near the end of the charge. It's difficult to know how much charge is in a battery while you're charging it. My guess is that the SOC is an estimate that gets better near the end of the charge. Regardless, the less current you're drawing, the less power you're putting into the battery. I've seen behavior that leads me to believe that if you stopped the charge within the tapering zone, you'll see the SOC continue to rise for a bit as the software gets a better estimate of the charge in the pack. However, you're still getting diminishing returns on charge time once the current starts to taper.

Another way to look at the data is to plot amperage draw as a function of state of charge. This will show us how the different charge limits compare with respect to when they start backing off from the full allowed current.


Tesla_Amps_vs_SOC.png

From this, we can see that there's isn't a penalty for charging at higher amps. Although it starts tapering the current earlier, it hits the lower amperage levels at about the same point as charging at those amperage values would start tapering.


Charging in Range Mode

Each of the above graphs show a standard mode charge. In range mode, it makes the bottom part of the charge range available and charges the pack even further: 0% and 100% in standard mode correspond to 11% and 87% in range mode. The same charging profile is in play, so as the battery pack crosses beyond the top of the standard mode charge, the current draw drops even further.

Tesla_40A_Range_Charge.png

Tesla says that the range of the Roadster is 244 miles and that it can be charged from empty to full in as little as 3.5 hours, but those two don't really go together. The 3.5 hour charge time is for a full standard mode charge which is less than 80% of the full range, around 195 miles. Getting the full range mode charge takes longer. For my car, it's about an hour and forty minutes to go from a full standard mode charge to a full range mode charge (and add more time if you start below 10% in range mode). So, if you're on the road trying to make good time, waiting the extra 1:40 for another 25 ideal miles is not worth it unless you need the full range to get to the next charging stop. Charging to the top of range mode only makes sense if you're charging overnight and don't care how long it takes. So, on an extended road trip, a full range mode charge is probably only useful at most once per day.

Topics for Further Research

I would like to add data for some more scenarios, most notably 120V/12A (the slowest of the options, which requires three days for a full standard mode charge).

It will be interesting to see how these graphs change over time as the battery pack ages.

Charging in a hot environment definitely changes energy consumption during charging because the fan and A/C will kick on to cool the battery pack. It's harder to control for ambient temperature across multiple charges, but it would be interesting to collect data and see how things change. I would not be surprised to see a significant penalty for charging at higher current if that pushes the temperatures high enough to require the A/C during the charge.

These results are for our Roadster, yours may be different. Even the conversion from standard mode percent and ideal miles to range mode may vary between vehicles and across firmware updates. Drop me a note if you want to learn how to do this analysis for your Roadster.

Collecting and processing the data to produce the charts is only partially automated. It would be nice to automate more of the process to make it easier to do the analysis for me and others who are interested in doing the same for their vehicles.






Three EV Lessons for Nissan from Tesla Motors

In the all-electric Tesla Roadster, Tesla Motors has done an amazing job of designing and producing a car that shows the world how to build a great electric vehicle that is reliable and fun to drive, creating a driving experience that is far superior to that of a comparable gas-burning high end sports car.

Despite having Tesla's example, I'm concerned that Nissan is going to do a poor job with the Leaf. They've already made three missteps which I think need to be corrected before they start selling electric cars.

Overstating the Leaf's Range

Nissan has been saying the Leaf will have a 100-mile range, but they are basing this claim on the LA4 city driving cycle, not on a highway or combined cycle. Tesla says the Roadster's range is 244 miles, and that's a real number. If I drive 55 mph on level freeway, I get energy use consistent with that 244-mile range. From what Nissan has said, I suspect that going 55 mph on level freeway with no heat or A/C will yield somewhere around 80 miles. That's still an awesome range that will meet the needs of many drivers, but it's a disappointment that they entered the game by overstating their range with a number that requires driving even more conservatively than a steady 55 mph.

The vast majority of people who've had the opportunity to drive electric on a daily basis prefer it to driving gas. The only people I've heard of complaining about the electric driving experience are people who purchased an EV with inadequate range for their driving needs. The EV consumer has to take some responsibility to understand their real driving needs and the capability of the EV they are considering purchasing, but any automaker that does anything less than conveying a conservative and realistic picture of the car's capabilities is going to end up with a lot of unhappy customers and a public relations disaster.

Nissan: Get real range numbers out there now. Tesla Motor's detailed page on range information could be better by being far more visible on their site. Make sure the one or two numbers that are most visible to the public are representative of what consumers can realistically expect to get under conditions that are clearly stated. Beyond a simple number or two, also put lots of technical detail out there to satisfy the people who want all of the information and will be the early adopters that clear the path for the mainstream buyers.

Update: I arrived at the 80 mile figure by adding a generous 10% to the 70-mile range for 55 mph with A/C on as reported by Forbes. A MotorTrend article pointed out by mwalsh and evnow on the MyNissanLeaf forum after I published this post quotes Nissan Leaf chief engineer Hidetoshi Kadota as saying normal freeway driving at 60-70 mph without climate control yields a range of 105 miles. So maybe the Leaf's range is better than suggested by the negative Forbes article, but it's still the case that Nissan is not making any of this information available on their web site.

Not Fully Exploiting the Advantages of Driving Electric

Nissan is apparently making the Leaf drive like a gas car rather than fully exploiting the advantages of driving electric. Specifically, they are putting little or no regenerative braking on the accelerator pedal. Tesla does a beautiful job on this. As you press down on the accelerator pedal, the car accelerates more, just as you'd expect. As you let up on the pedal, you get to the point where the car is just coasting before the pedal is completely released. As you release more, the car starts using the motor as a generator to charge the battery, the more you release the stronger the effect. When the pedal is fully released, the regenerative braking becomes quite strong and will slow the car down almost to a stop. (This effect is stronger at slow speeds where you're likely to want to slow more quickly, and lighter at freeway speeds where you want a more gradual slowing to match traffic.) To slow the car more quickly or bring the car to a complete stop, you press the brake pedal to engage the car's friction brakes, just like driving on gas.

After getting used to driving a 2002 Toyota RAV4-EV, which puts only a little regenerative braking on the accelerator with more on the brake pedal, I was dubious of the Tesla scheme. (The Honda Insight and Toyota Prius are similar to the RAV4-EV in this regard.) After driving the Roadster for a few days, I found the Tesla scheme to be much better than the RAV4-EV. It has two big advantages over more closely emulating a gas-burner. For the sake of driving efficiency, I want to slow the car with regenerative braking as much as possible, every time you touch the friction brakes you are wasting energy by converting momentum into heat and brake wear. With the Tesla scheme, I know exactly when I switch from efficient regenerative braking to wasteful friction braking: when my foot moves from the accelerator to the brake pedal. Aside from helping me drive more efficiently, and reducing wear on the brake pads, the Tesla scheme is simply a better way to drive. I can control speeding up, maintaining speed and slowing down all with one pedal. With just a little bit of time behind the wheel, it quickly becomes a more natural and comfortable way to drive. This is especially nice when driving downhill, it's just so easy to control your speed, driving a gas car seems primitive. The only complaint I've ever heard from a Tesla owner about how this works is that they want more regenerative braking on the accelerator, enough to fully stop the car at a light. Personally, I think what Tesla has done is perfect: the mostly one-pedal driving is familiar enough that a first time driver won't have any problem driving the car, with a bit of practice it's a better experience, and the occasional use of the brake pedal keeps my brain-foot connection trained to use both pedals, reinforcing the old skills that puts your foot on the brake pedal instantly when required to slow or stop quickly.

Nissan: talk to some Roadster owners about the pedals. Drive a Roadster for a week or a month. It's important to get this right, it will give your owners a great driving experience sell a lot of cars.

Yielding to Unreasonable Demands for Artificial Traffic Noise

Nissan has yielded to the hysterical calls to add noise to electric vehicles. So far, Tesla Motors has resisted doing the same. All modern cars are quiet when driving slowly; the difference between a pure-electric car and a modern sedan is only audible in very quiet conditions. If quiet cars are a safety issue, then we should be looking at requiring all cars to make a minimum amount of noise at low speeds rather than singling out electrics and hybrids. There is no credible research to suggest that quiet cars are any more dangerous than other cars. Cars are only quiet at low speeds, when both drivers and pedestrians have enough time to react and avoid any problems.

Even if we make electric vehicles noisy at low speeds, they will still be inaudible in noisy environments. If anything, noisy cars that drown out the normal sounds of tires, fans, and pumps are more of a danger than quiet cars. So, if we're really worried about sound-related risks between automobiles and pedestrians, we should have strict laws for all cars that require minimum sound levels at low speeds, and prohibit sounds loud enough to drown out those minimum sound levels. But actually, that wouldn't help either. Just imagine what a parking garage would be like if all cars had to make a constant continuous sound, it would be like having a stadium full of vuvuzelas creating a cacophony that makes it impossible to discern any individual sound while training everyone to ignore the annoying buzz.

Instead of squandering an opportunity to have quieter cars, we should be taking real steps to improve safety for all pedestrians, bicyclists, and everyone else on the road. We should be studying the whole situation to find out if quiet is a real problem for pedestrians, considering all cars -- not just electric and hybrid -- and also the impact of natural or artificial traffic noise on quality of life. Does adding noise to all cars benefit anyone, or does it just crank up the level of background noise and make it harder to hear what's going on nearby? Does adding a constant warning noise to a car just train drivers to expect that pedestrians will automatically scatter out of their way?

I've been driving electric for two years and I have surprised exactly one pedestrian: a woman who was walking backwards into the driving lane of a parking lot while carrying on a conversation with someone across the lot. I stopped and waited for her to realize she was walking into an occupied traffic lane and she eventually saw us waiting for her. She was surprised, but I wasn't, and there was never any danger to anyone. She was clearly embarrassed by what she had been doing and tried to blame her reckless behavior on my quiet car. If I had been going fast enough that her foolishness could have created a dangerous situation, my car would have been making the same tire noise as any other car, which may or may not have been audible depending on the environment.

I'm quite sure that I don't need my neighbor's electric car waking me up at 5 am just because people are scared of unfamiliar technology. I propose that we solve a real problem, like driving while phoning or texting, before we rush into squashing a quiet car advantage in response to uninformed hysteria.

Nissan: Please give your drivers a manual way to alert pedestrians with something less obnoxious than a blast of the car horn. GM did this with the EV1 and owners loved it. Hold off on making a constant noise until there's enough research to show quiet cars are a danger and we have a validated way to improve the situation for all cars -- electric, hybrid, or gas-burning.

Edited July 5, 8:46 am: corrected technical error in description of Tesla's regen algorithm and clarified pedestrian surprise story.

Edited July 5, 3:20 pm: added update on more optimistic Leaf range numbers as reported by MotorTrend.

Electric Vehicle Range and Charging

If you are interested in driving an electric vehicle, I'd like to tell you how to ensure that you'll have a great experience, or at least make sure you don't have a disappointing experience.

Here's the secret formula for EV success: make sure the range of the vehicle suits the driving you plan to do with it. I know that sounds pretty obvious and easy, but there are two big barriers to success: bad reporting in the media and obfuscation by the automakers. There's also a bit of complexity: just like gas mileage, you can't express EV range with a single number. I'll get that all straightened out from the perspective of someone who has been driving all electric for almost two years.

In addition to the general facts of driving electric, we recently got some more specific range numbers for the upcoming Nissan Leaf which I'd like to put into perspective for potential buyers.

Reporting the Obvious and Irrelevant

If you follow EV coverage in the press, you'll find a steady stream of articles from reporters who think they've discovered the flaw that will deflate all of the hype about EVs. Their basic premise is that EVs won't work because they take too long to charge and there's nowhere to charge them. These articles are either totally made up, or based on the bad experience of a single EV driver and don't represent the real experience of the majority of EV drivers who purchased a vehicle appropriate for their needs. My purpose here is to make sure you don't become the excuse for some lazy reporter to write yet another of these uninsightful articles.

Would a newspaper publish an article about a Ford Focus owner who was disappointed that he couldn't fit his wife and seven kids in the car? How about a Honda Civic owner who's mad her car isn't suited for towing an RV? A Hummer owner who's mad about how much it costs to drive a mile? Of course not, these would be laughably obvious mistakes made by the owner in choosing a car.

For the consumer properly informed on the benefits and limits of electric vehicles, it's equally obvious that buying an EV with a 75-mile range to do a daily 74-commute with no charging infrastructure isn't going to yield a happy driver. That's obvious and boring.

The real story is that there is no problem with range or lack of charging infrastructure if you can just charge at home to meet your driving needs, instead it's a real convenience not to have to fuel your car away from home. So let's see if you qualify...

The Rule

To be a happy EV owner today, you want to buy a car that has enough single-charge range to handle all of your daily driving with a reasonable buffer for typical errands without needing to charge anywhere other than your charger. (Your charger is probably installed at your home but might also be at your work location.)

The good news is that for most drivers, the required range is surprisingly low. A 2003 US Department of Transportation survey (PDF) found that 78% of Americans drive less than 40 miles a day. If you're in the 78%, and don't often have big exceptions to that daily commute distance, then an EV that gets at least 70 miles of range in your driving conditions will most likely make you one happy camper. (But keep reading to learn how to evaluate EV range.)

Starting this fall, we'll start to see a lot of chargers getting installed in a few metro areas in the US and other countries. As this happens, and EV ownership goes up, more and more charging will become available and convenient. As that happens, charging away from your home charger will become more dependable and the usable range of EVs will expand as a result. For example, if you can charge at home and at work, then the usable range of an EV is doubled because you only need to travel one way on a single charge (with a reasonable buffer).

Since there's going to be limited availability of affordable, practical, freeway-capable EVs in the near future (as in zero today, and a few thousand Nissan Leafs starting to trickle out starting in December of this year, then more from other automakers to follow), it's OK if the first few models of EVs don't work for you, they will work for millions of potential buyers. Wait for an EV that will be right for your driving needs.

The Win

After you've driven electric for a month, spending just a few seconds to plug in each night to start every day with a full charge, without ever having to stop at a gas station, you'll wonder how you ever tolerated the hassles of driving a gas burner.

In addition, the experience of driving electric is just better: you get instant acceleration without waiting for the engine to rev up and the transmission to shift, another nuisance of driving gas that you'll only notice when you get used to driving without it.

Bonus: no tailpipe emissions, low-to-zero emissions from electricity generation, and never having to worry about the price at the gas pump.

Evaluating EV Range

Just like gas mileage, EV range can't be expressed as a single number. Even the two EPA city and highway gas mileage numbers you see on vehicle stickers don't tell the whole story. This is such a big issue with gas cars, the caveat "your mileage may vary" has become part of our cultural vernacular.

Let's start by going over how gas mileage works. Those gas mileage numbers on the sticker in the window are determined by driving the car on two standard EPA driving profiles meant to simulate typical driving conditions, which have been recently revised to better represent actual driving conditions by including things like using air conditioning on part of the cycle.

Gas mileage depends on a number of factors, including passenger and cargo weight, HVAC use, start/stop frequency, road incline, rain/snow, and so forth, but the biggest factor is speed. At low speeds, gas mileage suffers because there's an overhead of running/idling an engine that burns fuel whether you're moving or not. Stop and go traffic is also bad news, because you invest energy in speeding up only to throw all it all away by converting your car's momentum into heat plus wear and tear on your brake pads. At higher speeds gas mileage suffers because wind resistance goes up rapidly with speed, so much so that it takes more energy per mile in a way that starts increasing dramatically at the low end of freeway speeds. Somewhere in the middle, at a moderate, steady speed, is where you get your maximum gas mileage.

Electric vehicles behave similarly, except they get punished less in stop and go traffic because, like hybrids, they can slow down with regenerative braking wherein the motor is driven by the drivetrain to act as a generator to put charge back into the batteries. This not only improves energy efficiency, but also reduces brake wear.

Given this complexity, how can an automaker tell you how your gas or electric car will perform under your driving conditions? Answer: they can't.

While you can argue that it's even more important to understand energy efficiency (in the form of single-charge range) for an electric vehicle, there's the ugly truth about burning gas that no one likes to talk about: it's no good for predicting long-term fuel costs. With a proliferation of gas stations everywhere, range isn't something you think about for a gas car. What you do think about is your pocketbook. Better mileage means cheaper stops at the gas station. While knowing your gas mileage might tell you what you'll be spending at the pump this month, it doesn't say anything about what you'll be paying next month or next year. Anything from a hurricane, to Wall Street speculators, to a political action by OPEC, to the whim of some oil nation tyrant can cause gas prices to double by barely nudging the precarious balance between world oil supply and demand. Electricity rates are far more stable, especially when it comes from renewable sources that aren't subject to the unpredictable economic forces that rule the world's fossil fuel energy market.

How can a potential buyer figure out if a given EV has the range required to convert from the hassles of driving gas to the joy of driving electric? Read on...

Case Study: the Range of a Tesla Roadster

For most people, buying a $109,000 two-seat sports car is totally out of the question, whether it's a gas-burning Ferrari or an all-electric Tesla Roadster. Being able to go from 0 to 60 mph in under four seconds isn't going to get the kids to school or bring home the groceries from Costco. But, as of this writing, Tesla Motors is the only automaker selling a production, freeway capable electric vehicle in the US. If you dig a little, their web site provides a wealth of information about driving electric that will be of help to any potential EV driver.

The best illustration I have found of the effect of speed on efficiency, and thus range, is this graph from Tesla Motors showing how the Roadster's range varies with speed, while holding other factors constant at favorable values (constant speed, no AC, no driving up a mountain, etc.).

tesla-range-vs-speed.png

The EPA range number for the Roadster is 244 miles. From the graph, you can see that you get that range driving at about 55 mph. If you have to pick one number to describe range for a Roadster encompassing city and highway driving, this is a pretty good choice, and it's a real number that I've personally verified as much as possible without actually driving the car until it stops. Likewise, the value of about 180 miles for 70 mph matches my real-world experience. Simon Hackett and co-driver Emilis Prelgauskas came close to the graph's 34 mph range number by driving 313 miles on a single charge in Australia last year. Perhaps someone will be patient enough to try out the 17 mph peak on the graph at over 400 miles of range, but that would be a very long drive!

I'd say Tesla did a good job here, picking a reasonable single number for stating range based on some combination of the EPA city and highway cycles. They also provide the graph showing the whole story, at least with respect to speed, although to find it you have to dig down into their blog entries to find the article with the graph and full explanation.

But there's a bit more to the story that requires more digging. The above range numbers are for using the entire battery charge from full to empty, something you really don't want to do on a regular basis because it's not good for the life of the battery pack. For normal daily driving, you don't need 244 miles of range, so Tesla provides a "standard" mode of charging that only uses the middle 80% of the battery pack. This will extend the life of the battery pack and still give you 200 miles of range at 55 mph, or about 160 miles at 70 mph. This is between four and five times what most of the drivers in the US need for their daily commute. For daily driving, the range of the Roadster is ridiculously high. Going on a road trip beyond the single charge range is doable, but it requires patience and planning. This situation will get a lot better as high-speed charging stations start to appear later this year.

The numbers also get worse in really hot weather. Last summer I drove from Portland to Seattle in 100-degree weather, about 180 miles. This trip is easy at 55, in fact even at 65 mph it's no problem. But this trip, with the HVAC system using energy to keep the battery pack cool, it took getting off the freeway and careful route planning to reduce both distance and speed to get home without having to stop for a partial charge.

The upshot: if you live in an extreme climate, with either a lot of sub-zero winter days or 100+ degree summer days, you'll want to add more buffer to your required EV range.

The last big issue is aging of the battery pack: as the battery pack ages, its capacity will decrease gradually over time, then drop more rapidly as the battery pack wears out. Our car is performing the same as it did when we got it one year and 9,000 miles ago. Other Roadster owners have crossed the 20,000 mile mark, and so far I haven't heard of anyone noticing a loss of range. Tesla's battery pack warranty is only 3 years or 36,000 miles, which is in line with other high performance sports cars, but is a bit underwhelming compared to their statements of expected battery life, seven years or 100,000 miles. Nissan says their battery pack should last 10 years, and because the Leaf is a much more mainstream vehicle I expect they will offer a much better battery warranty.

Still, if you're planning to drive your new EV for 5 to 10 years, it's not going to be smart to buy an electric car that's right on the edge of meeting your needs with its full factory-fresh range.

Our Electric Garage

In July of 2008, while we were waiting for Tesla to build the Roadster we reserved in 2006, we were fortunate enough to buy a rare 2002 Toyota RAV4-EV from its original owner in Berkeley, CA. If you've seen Who Killed the Electric Car, then you've know what a great electric driving experience the lucky few drivers had during the brief period where California required all of the automakers to find a way to reduce tailpipe emissions to zero.

When we got the RAV4-EV, we expected it would take care of about half of our driving. We were wrong by a wide margin: it took over 95% of our driving. The only time we burned gas was when we each had to be different places at the same time. Despite our EV enthusiasm, we were range anxiety victims and overestimated how much range our driving really required.

In our experience, the RAV4-EV gets about 100 miles per charge. Even staying out of the top 10% and bottom 20% of the battery pack means we can drive 70 miles per charge under our typical driving conditions, and can handle any driving conditions with enough range we don't generally have to think about it.

When our Roadster finally arrived nearly a year later, we were totally converted to the electric driving experience. Having a second electric car meant we didn't have to choose which of us got to drive the smooth, quiet car.

Our hope is that the Leaf will bring this sort of EV capability into the mainstream in an affordable, practical, safe vehicle.

Nissan Leaf Range Numbers

The first range number we heard for the Nissan Leaf was 100 miles using the EPA's LA4 drive cycle. Darryl Siry gets credit for being the first to point out that the LA4 drive cycle is a poor choice for describing EV range as it's a city driving cycle that's nicer to the range than the combined city/highway drive cycle that is used by Tesla. Siry also wrote a great piece on the issues with range numbers and the need for federal regulations on how they are reported which added perspective to my personal experience and helped inform my writing here.

On June 19th 2010, we got some more range numbers from Nissan via Forbes. To summarize:

  • Cruising at 38 mph in 68-degree weather: 138 miles.
  • Suburban traffic averaging 24 mph, 77 degrees: 105 miles.
  • Urban highway, 55 mph, 95-degrees, A/C on: 70 miles.
  • Winter city driving, 14 degrees, averaging 15 mph: 62 miles.
  • Stop and go urban traffic averaging 6 mph, 86 degrees, A/C on: 47 miles.
The Forbes article is typical anti-EV fear mongering, the facts presented with pithy commentary but no critical analysis. Have you ever read an article on how your gas mileage drops in stop-and-go urban traffic during the heat of summer or the cold of winter and how much that's going to cost you when you're driving your gas-guzzling SUV? Of course not. But you do hear about how it will affect the range of an EV that isn't even on the roads yet. It's great to get more facts, but try to ignore the hand-wringing hysteria that makes it sound like the federal government is about to repossess all of the gas burners and force everyone to drive a Nissan Leaf.

The fact is, the Leaf doesn't have to meet the needs of every driver in the US. It just has to meet the needs of the few thousand people lucky enough to be able to buy one in the next year. Even that worst-case 47 miles is going to be good enough for millions of drivers now (remember that 78% of US drivers commute less than 40 miles per day) and good enough for even more drivers when there are convenient chargers at workplaces and malls.

Is the Leaf's Range Right for You?

I think the best way to figure out what range an EV needs to have to suit your needs is to monitor your driving. Just write down your odometer when you get home each night. From that, you can figure out how far you actually drive. Be sure to get not only your regular daily commute, but also some examples of exceptional days with extra appointments, shopping, detours, etc. If you have an additional vehicle that would supplement your EV, throw out any long drives that you would choose (in advance) to handle with that vehicle. Then add a buffer for the unexpected, and, if it applies, more buffer for the extreme driving conditions that reduce range.

People who haven't driven an EV will be tempted to always have half of the battery in reserve for surprises, but most experienced EV drivers are very comfortable driving down to 30% or even 20%. (With the Roadster where I get great feedback on the state of charge and know it won't hurt the battery, I have no problem driving down to 10%. With the RAV4-EV, which gives less precise info, we try to stay out of the bottom 20%.)

If you commute 70 or more miles per day in a city that regularly has horrible traffic, freezing cold or sweltering hot days, and isn't planning for charging infrastructure, then don't buy a Leaf to be your only car this year. Wait until the cars and the charging better suit your driving needs. There are more than enough of us to buy up every single Leaf Nissan can make in the next 12 months, so don't become fodder for another annoying article about how EVs are impractical because someone bought one that's not suited to their driving.

If the Leaf's range numbers do suit your driving needs and you want to get an early start driving electric, then sign up, right now. They are going to sell fast. But before you fully commit to a purchase, get the information you need to determine if the Leaf will meet your needs, and get that info directly from Nissan. Don't depend on a conversation with your local auto sales drone.

I'm glad we have learned more about the Leaf's range months before anyone will be committed to buying one. Next up I want to see a graph like Tesla gives for the Roadster range vs. speed under optimal driving conditions. I also want to know if the range numbers given are for using the full battery to its maximum range, or if they include allowance for the reserves at the top and bottom of the charge cycle needed to maximize battery life.

If the Leaf will meet your needs, you won't regret switching away from gas. The benefits of charging convenience and drivability are great motivators to be among the early adopters to buy one of the first mainstream factory electric vehicles.



Tesla Roadster Energy Reporting and Efficiency

For the month of November, I drove the Roadster 762.2 miles. That's mostly with just me in the car driving a variety of city and highway miles. I tend to drive enthusiastically most of the time, but the month also included a roundtrip drive to Longview, WA on cruise control at 55 mph.

During the month, I put about 247.8 kWh into the car from the wall (213.3 kWh metered from my garage plus approximately 34.5 kWh from an unmetered NEMA 14-50 outlet in Longview). That's 325.1 Wh/mi and includes charging losses, battery pack self discharge, heater, headlights, etc. That's my wall-to-wheel number and is based completely on things I can measure.

From July 25th to August 27th, I drove the Roadster 696 miles and pulled 234 kilowatt hours (kWh) from the grid, giving us 336 Wh/mi. That included some hot weather and four 1/4 mile runs at Pacific Raceways.

On individual charges, I see efficiency vary from 240 Wh/mi to over 400 Wh/mi, and obviously much higher for things like drag racing.

I charge consistently at 240V and 40A at home. In Longview it was 230V and 40A. Because of charging overhead, I assume I would get slightly better charging efficiency if I charged at home at 70A. So, my numbers are just that, my numbers. Another driver would get different numbers depending on driving, weather, road conditions, and charging habits.

The EPA estimates documented in the paperwork for our car say 260 Wh/mi city and 290 Wh/mi highway. I've seen information from early 2008 Roadsters that had the EPA numbers and 340 and 360 Wh/mi.

You may have heard Roadster owners talk about numbers well below my 330 Wh/mi numbers. These are most often the number reported by the car's info screen which are not wall-to-wheel numbers, and in fact are (as far as I know) not at all documented as to what that number means. I have figured out some things about the numbers reported by the car, which I'll now explain.

For the month of November, the Roadster's trip meter says that I used 207.9 kWh, and thus 272.8 Wh/mi. But what does that mean? Did I push 207.9 kWh into the motor, or is that net of energy pushed back into the pack from regenerative braking (regen)? Does it include energy used to run the accessories and/or running the coolant pump and fans during charging?

On the "Energy History" screen, the Roadster tells me my "net energy used" for the month was 233 kWh and that I got 26 kWh from regen. What does "net" mean? I would assume that "net" means "net of regen," i.e., power from battery pack minus power into battery pack from regen. Except, if I compare those numbers to what the trip meter says, I notice that 233 - 26 = 207, which is suspiciously close to the energy use number reported on the trip meter.

From that, I infer that the trip meter's number is net energy use from the battery pack (power drawn minus regen put back in), and thus the so-called "net energy" from the energy use screen is really the gross energy pulled from the battery pack including energy that went into the pack from both wall charging and regen charging.

Do these numbers include the energy spent on accessories? Is the difference between what I put in through charging (247.8 kWh) and the car's reported net energy use (207.9 kWh) just charging losses or does that also include accessory use? I have no idea.

The only number I can stand behind, and the only number I can compare with other electric vehicles, is the wall-to-wheel number. The efficiency number reported on various of the Roadster's info screens is useful for understanding how driving style and conditions affect efficiency and for predicting/optimizing range, but is seemingly useless in any other context.

I believe the same is true of any efficiency number for the Leaf given out by Nissan, or any other EV manufacturer or driver, unless that number is as clearly defined and directly measured as the wall-to-wheel number.

It used to be that the Tesla screen reported an energy number after each charge that was much lower that what was actually drawn from the wall. I suspect that was the energy that actually made it into the battery pack, but I never saw it defined by Tesla. More recent firmware versions are reporting a number that is close to the number I read from the wall meter (and averaging multiple consecutive readings together agrees to within 1% of the wall reading). This is a big step forward for drivers who want to monitor their actual wall-to-wheel energy use and efficiency, but don't want to go to the expense of installing a dedicated meter. It would be a real benefit to the Tesla community if Tesla would (a) define the number they currently report and (b) make the energy drawn from the wall across multiple charges easily available.

Regarding range on a single charge, my personal record is 192 miles driven with a passenger in 100+ degree weather starting with a bit less than a full charge and ending with 10 miles of range left. On the trip back from Longview in cool weather, I drove 136.9 miles using cruise control at 55 mph using 55% of the battery. To the extent that you can extrapolate that to the full battery, that figures out to about 249 miles of range. On the trip down to Longview earlier the same day, also using cruise control at 55 mph, it was raining and colder, so I had the wipers, headlights and heater on and used 65% of the battery pack, for an extrapolated range of 208 miles.

My car is a 2008 Tesla Roadster with firmware version "3.4.15 15" (upgraded from "3.4.13 15" on 11/15/2009).

Edited at 10:23 pm on 12/13 to correct typo in second paragraph.
2  

Find recent content on the main index or look in the archives to find all content.